
Fractal-Based 
Point Processes

2005

Steven Bradley Lowen
Harvard Medical School 

McLean Hospital

Malvin Carl Teich
Boston University

Columbia University

WILEY

lowen-fm.qxd  6/1/2005  9:18 AM  Page iii

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005

Administrator
Rectangle

Administrator
Rectangle


Administrator
Rectangle


Administrator
Rectangle



13
ComputerNetwork Traffic

In the course of his studies of tele-
phone traffic,Agner Krarup Er-
lang (1878–1929), a Danish mathe-
matician, conceived of a number of
important point processes and estab-
lished the fundamental framework
for queueing theory.

The Swedish mathematicianConny
Palm (1907–1951)advanced the ap-
proach set forth by Erlang by in-
corporating realistic features of tele-
phone traffic, such as the clustering
of calls and the superposition of traf-
fic on multiple channels.
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In this, the final chapter of the book, we show how the various approaches and
models developed in previous chapters can be used to analyzecomputer network
traffic, a process that is at the same time complex and rich in fractal behavior.1 The
mathematical study of computer network traffic is calledteletraffic theory. This

1 This chapter is not designed to provide a comprehensive introduction to computer network traffic in
general, nor to its fractal characteristics in particular. For the latter, we refer the reader to the comprehensive
tome compiled by Park & Willinger (2000), the excellent article by Abry, Baraniuk, Flandrin, Riedi &
Veitch (2002), and the didactic book chapter authored by Willinger, Paxton, Riedi & Taqqu (2003).
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EARLY MODELS OF TELEPHONE NETWORK TRAFFIC 315

theory encompasses various features of queueing theory, stochastic processes, control
theory, optimization theory, and graph theory. In practice it proves useful for ensuring
network stability and for the optimization of resource allocation. Teletraffic theory
enables us to evaluate routing protocols and switch designs and offers a point of
departure when planning network expansion. Agner Krarup Erlang is widely known
as the “father of teletraffic theory.”

We begin in Sec. 13.1 with a brief review of early Poisson-based approaches to
modelingtelephone network traffic, as initially set forth by Erlang (1909), Engset
(1915), and Palm (1937). In the course of this review, we provide an elementary
introduction to queueing theory. In Sec. 13.2, we examine moderncomputer com-
munication networks, which carry information in the form of packets,2 and contrast
these systems with telephone networks. We devote Sec. 13.3 to an examination of
the fractal nature of computer network traffic. Various salient issues pertaining to
modeling and simulation are set forth in Sec. 13.4. In Sec. 13.5 we consider a number
of fractal-based point-processes that have served as models for computer network
traffic.

Finally, in Sec. 13.6 we offer the reader a didactic step-by-step approach designed to
assist in the identification of an unknown fractal-based point process. Using computer
network traffic as an example, we demonstrate that the data sets we examine follow the
form of a fractal-rate point process, and closely resemble the biological point process
recorded at the striate cortex. Bearing in mind the tradeoff between model accuracy
and parsimony, we conclude that two point-process models are good candidates for
describing computer network traffic: a Neyman–Scott cluster process and a Bartlett–
Lewis cascaded process. We examine the performance of these two models in some
detail, and compare and contrast their predictions with two classic Ethernet-traffic
data sets.

13.1 EARLY MODELS OF TELEPHONE NETWORK TRAFFIC

In the early years of telephone service, the subscribers in a town typically connected
to a common exchange, staffed by an operator who routed all calls to their intended
destinations. Routing calls within the town required only a simple connection at
the exchange and rarely led to delay. However, call requests to numbers at other
exchanges required the use of shared lines to those exchanges, and to additional lines
and exchanges for very long-distance calls. When all lines to another exchange were
busy, someone wishing to place a call through it would have to wait until one of the
lines became free.

Service could, of course, be improved by installing an individual line for each
customer, but the cost of doing so would be exorbitant. The intelligent design of

2Packets comprise small blocks of bits that travel together over a computer network, independently of
other packets. Typically, the information in a file or data stream comprises a large number of packets.
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316 COMPUTER NETWORK TRAFFIC

any telephone network offers the engineer the following challenge: how to route calls
among exchanges with a specified degree of reliability — and within a certain budget.

The design of an efficient system requires detailed knowledge of the offered load of
call traffic. As part of a comprehensive examination of the applications of probability
theory to telephone traffic in his native Denmark, Erlang carried out the first analyses
of inter-exchange telephone traffic in 1909, 1917, and 1920.3 He argued that the calls
initiated by any one person form a negligible part of the aggregate call traffic at a large
exchange. He also reasoned that different people initiate calls largely independently.
Taken together, these heuristic arguments suggested that the homogeneous Poisson
process (see Sec. 4.1) provides a suitable model for the aggregate traffic. And, indeed,
this does turn out to be the case under many circumstances.

An extension of some of Erlang’s results was provided by the Norwegian math-
ematician Engset, both in an unpublished manuscript completed in 1915 [Myskja
(1998a) provides commentary on this manuscript] and in a paper published in 1918
[Jensen (1992) provides commentary on this paper].4 In 1943, the Swedish mathe-
matician Palm offered a number of significant generalizations of Erlang’s results. He
introduced such key features as slow rate modulations associated with daily, weekly,
and yearly cycles; sudden increases in traffic following popular sporting events or
major disasters; and the complexities of traffic that span multiple exchanges. The
incorporation of these considerations played a crucial role in the design of efficient
telephone networks.

13.1.1 Queueing theory

Queueing theory provides a suitable point of departure for studying simple telephone
networks (Cohen, 1969; Cooper, 1972; Kleinrock, 1975; Asmussen, 2003). This
mathematical formalism describes the utilization of a resource on which demands
are made in a random fashion. The arrival times, and the magnitude of the resource
requested per demand, may be random, and the resource itself may also vary in time.
Demands that cannot be immediately met are queued (stored in a buffer) or declined.

For didactic purposes, we begin by considering the simple homogeneous Poisson-
process model of call arrivals at a telephone exchange. Upon arrival, each call is
queued. Resources can only be provided for storing a finite number of unprocessed
call requests. As telephone lines come available, operators connect calls to their
intended destinations in the order in which they arrived. The call durations follow an
exponential distribution, corresponding to the interevent intervals of a homogeneous
Poisson process. We consider the case of a single outgoing telephone line.

To model this call-activity sequence, we make use of the following construct:

3 For a brief discussion of these papers, see Brockmeyer, Halstrøm & Jensen (1948, pp. 101–104). The
1917 paper is widely considered to be Erlang’s most important.
4 Engset (1915) highlighted the importance of thetruncated binomial distribution, an extension of Erlang’s
(1917)B formula.
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EARLY MODELS OF TELEPHONE NETWORK TRAFFIC 317

1. Thequeue lengthor buffer occupancyQ(t) assumes integer values between
a minimum of zero and a maximum ofQm. The quantityQm is known as the
maximum queue lengthor buffer size.

2. Calls arrive at timesta,k corresponding to a homogeneous Poisson process
Na(t) with fixed, deterministic rateµa, where the labela denotes that it repre-
sents thearrival process, andk indexes the arrival times.

3. The service times are independent and identically distributed exponential ran-
dom variables with mean duration1/µs; the corresponding auxiliary homoge-
neous Poisson processNs(t) has a fixed, deterministic rateµs and correspond-
ing event timests,k. The labels denotes that it represents theservice process,
andk again serves as an index.

4. WhenQ(t) < Qm, Q(t) increments by unity at eachta,k.

5. WhenQ(t) = Qm, the events ofNa(t) correspond to dropped calls.

6. WhenQ(t) > 0, Q(t) decrements by unity at eachts,k.

In a handy notation developed by Kendall (1953), this model is called an M/M/1/Qm

queue (Kleinrock, 1975; Gross & Harris, 1998). The first symbol describes thear-
rival process, “M” for “Markov” in this case, indicating independent arrivals and
therefore a homogeneous Poisson process. The exponentially distributed duration of
each call corresponds to a homogeneous Poissonservice process, so that “M” stands
as the second symbol as well. The “1” that stands as the third symbol signifies the
number of servers(outgoing lines). Finally, the last symbol “Qm” characterizes the
maximum queue length; by convention, the omission of this symbol signifies that
Qm = ∞. Other queueing models comprise different arrival or service processes, in-
cluding those that are deterministic (“D”) or general (“G”), and allow for an arbitrary
number of servers.5

We now proceed to write a state equation for this model. LetpQ(n, t) ≡ p (n, t)
represent thequeue-length distribution, the probability thatQ(t) = n. Except for
the boundary casesn = 0 andn = Qm, a constant rate of changeµa associated
with the arrival processNa(t) carries the queue-length distribution fromp (n, t) to
p (n+1, t), which concomitantly decreasesp (n, t). For this component we therefore
havedp (n, t)/dt = −µa p (n, t). Similarly, an arrival whenQ(t) = n− 1 increases
p (n, t) via the term+µa p (n−1, t). The service process provides analogous contri-
butions:−µs p (n, t) + µs p (n + 1, t). Recognizing thatp (n− 1, t) = 0 for n = 0
andp (Qm + 1, t) = 0 for n = Qm accommodates the boundary cases. Combining

5 Poisson-arrival and exponential-service processes have traditionally provided a good description for the
public switched telephone network. These assumptions can no longer be fully justified, however, because
of the vast changes that have taken place in the voice telephone network in recent years, such as its increased
use for internet connections and facsimile transmission (see, for example, Duffy, McIntosh, Rosenstein &
Willinger, 1994).
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all terms, including those for the boundary cases, then leads to a rate equation known
as aforward Kolmogorov equation:

dp (n, t)
dt

=





−µa p (n, t) +µs p (n + 1, t) n = 0

−µs p (n, t) + µa p (n− 1, t) n = Qm

−(µa + µs) p (n, t)+ µa p (n− 1, t) + µs p (n + 1, t) 0 < n < Qm.

(13.1)

Under steady-state conditions, the left-hand side of Eq. (13.1) is zero for alln. A
bit of algebra then leads directly to thegeometric queue-length distribution(Erlang,
1917; Palm, 1943),

pQ(n, t) → (1− ρµ) ρn
µ

1− ρQm+1
µ

, (13.2)

wheretheservice ratio (also calledserver utilization) is defined as

ρµ ≡ µa

µs
. (13.3)

For the special case of infinite buffer size, we recover the M/M/1/∞ ≡M/M/1 queue,
in which case Eq. (13.2) reduces to

p∞(n, t) = (1− ρµ) ρn
µ. (13.4)

For a service ratioρµ = 0.9, we display this geometric queue-length distribution as
the dashed straight line in Fig. B.15 (semilogarithmic coordinates), and as the dotted
curve in Fig. B.16 (doubly logarithmic coordinates).

Three measures turn out to be useful for assessing queueing-system performance:
themean queue length(or mean number of waiting calls), themean waiting time
spent in the buffer, and theoverflow probability. We consider these measures in
turn.

The mean number of waiting calls follows directly from the distribution provided
in Eq. (13.2) (Palm, 1943):

E[Q] =
∞∑

n=0

npQ(n)

=
Qm∑
n=0

n
(1− ρµ) ρn

µ

1− ρQm+1
µ

=
ρµ − (Qm + 1− ρµQm) ρQm+1

µ

(1− ρµ)
(
1− ρQm+1

µ

) . (13.5)

Straightforward algebra yields the higher-order moments of this distribution as well.
An intuitive but nontrivial result, known asLittle’s law (Little, 1961), provides

that the mean waiting time for a single server is simply the mean number of waiting
calls multiplied by the mean service time:

E[τw] =
E[Q]
µs

. (13.6)
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Results for multiple servers are somewhat more complex, although still quite tractable,
since call-traffic sharing occurs across lines; before any call encounters a delay, all
lines must be occupied. We readily modify Eq. (13.6) to yield an approximate result
for M servers:

E[τw] ≈ E[Q]
Mµs

. (13.7)

Nevertheless, we emphasize that Eqs. (13.1)–(13.5) change form forM servers. Tran-
sition rates among different queue occupancy probabilitiesp (n, t) vary with n for
n < M ; not all M lines carry calls if fewer thanM calls reside in the buffer. In
particular,E[Q] no longer follows the form set forth in Eq. (13.5).

The third performance measure is the probabilityPB that an arriving call fails to
enter the buffer because it is full. This quantity is known as thebuffer overflow
probability (or call-drop probability or blocking probability ). Settingn = Qm

in Eq. (13.2) for the single server yields

PB = lim
t→∞

pQ(Qm, t)

=
(1− ρµ) ρQm

µ

1− ρQm+1
µ

(13.8)

=
1− ρµ

ρ−Qm
µ − ρµ

. (13.9)

Theproportion of arrivals that finds the queue full equals the proportion of times that
the queue is full. Said differently:Poisson arrivals see time averages, often captured
by the acronymPASTA(Wolff, 1982). For large buffer sizesQm, the termρ−Qm

µ in
the denominator of Eq. (13.9) dominatesρµ for ρµ < 1, so thatρ−Qm

µ −ρµ → ρ−Qm
µ

[this approximation understatesPB by the factor1/(1 − ρQm−1
µ ) ≈ ρQm−1

µ ]. The
overflow probability then reduces to

PB ≈ (1− ρµ) ρQm
µ ∼ ρQm

µ . (13.10)

Equation (13.10) reveals that Poisson arrival and service processes give rise to an
overflow probability that decreases with decreasing service ratioρµ as a power-law
function, and decreases with increasing maximum queue lengthQm as an exponential
function.

Figures 13.1 and 13.2 display the behavior of the overflow probabilityPB set forth
in Eq. (13.10), as a function of the service ratioρµ and of the maximum queue length
Qm, respectively. Relatively modest values of the maximum queue length yield quite
small overflow probabilities. Erlang first presented these results, as well as exact
results forM independent servers (telephone lines), in 1917.

For the M/M/1/Qm queue, Eq. (13.2) shows thatpQ(n) ∼ ρn
µ while Eq. (13.10)

tells us thatPB(Qm) ∼ ρQm
µ . We conclude that for fixedρµ, both the queue-length

distribution and the overflow probability follow a geometric distribution. Indeed, for
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3020
Qm = 10M/M/1 QUEUE PERFORMANCE

SERVICE RATIO ��OVERFLOW
PROBABILIT
YP B

1:00:50:20:1

10010�1010�2010�30
Fig. 13.1 Buffer overflow probabilityPB as a function of the service ratioρµ ≡ µa/µs, for
three values of the maximum queue length:Qm = 10 (solid curve),20 (dashed curve), and30
(dotted curve). The roughly straight-line behavior on this doubly logarithmic plot represents
the power-law relation betweenPB andρµ inherent in Eq. (13.10).

Qm →∞, Eqs. (13.4) and (13.10) provide

p∞(Qm) = (1− ρµ) ρQm
µ

PB ≈ (1− ρµ) ρQm
µ ,

(13.11)

respectively, wherep∞(n) represents the queue-length distribution for an M/M/1/∞≡
M/M/1 queue. As discussed in Probs. 13.3 and 13.5, these equations demonstrate
that the infinite-buffer queue-length distributionp∞(n), evaluated atn = Qm where
Qm is the buffer size, provides an approximation for the overflow probability of the
M/M/1/Qm queue:

PB ≈ p∞(Qm). (13.12)

13.2 COMPUTER COMMUNICATION NETWORKS

Modern computer communication networks differ greatly from their voice-based
precursors. Indeed, they are possibly the most complex of all systems contrived by
humans. Data travel as small blocks of digital bits, in the form of packets, rather
than as entities such as entire telephone conversations or files. No master scheduler
directs the functioning of routers in the network; rather, each router passes packets
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�� = 0:99�� = 0:90�� = 0:50
M/M/1 QUEUE PERFORMANCE

MAXIMUM QUEUE LENGTH QmOVERFLOW
PROBABILIT
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10008006004002000

10010�1010�2010�30
Fig. 13.2 Buffer overflow probabilityPB as a function of the maximum queue lengthQm,
for three values of the service ratio:ρµ ≡ µa/µs = 0.50 (solid curve),0.90 (dashed curve),
and0.99 (dotted curve). The roughly straight-line behavior on this semilogarithmic plot rep-
resents the exponential relation betweenPB andQm inherent in Eq. (13.10).

on to other routers based largely on local activity and availability. The network itself
dynamically allocates the routes over which the packets travel. As a consequence,
packets flow smoothly around a blocked router, whereas a corresponding failure in a
voice network might easily disable a large section of the network.

13.2.1 Scale-free networks

Both the Internet and the World Wide Web6 behave as a scale-free networks [see
Sec. 2.7.8 and Albert & Barabási (2002); Dorogovtsev & Mendes (2003); Pastor-
Satorras & Vespignani (2004); Song, Havlin & Makse (2005)]. Such networks abound
in the domain of computer communications — power-law distributions describe:
(1) the number of edges emanating from a vertex in the Internet graph (Faloutsos,
Faloutsos & Faloutsos, 1999; Aiello, Chung & Lu, 2001); (2) the number of exchanged
emails per email address (Ebel, Mielsch & Bornholdt, 2002); (3) the number of web
pages per website (Huberman & Adamic, 1999); and (4) the number of hyperlinks
per web page in the virtual World Wide Web (Albert et al., 1999).

6The nodes of the Internet are the physical routers and computers while the edges are the connecting
cables and wires. The nodes of the World Wide Web are web documents while the edges are the directed
hyperlinks (URLs) that connect them.
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Proper design of network topologies, and avoiding the deleterious effects of coor-
dinated attacks against network hubs, require that we understand and accommodate
the scaling nature of the network.

13.2.2 Static representation

Even a static representation of the Internet proves difficult to analyze. Figure 13.3
shows one representation of the majorisp (Internet Service Provider) nodes of the
Internet, indicated as small squares. The angular position around the circle indicates
the geographical longitude of the node while the distance from the center to each node
varies inversely with the traffic carried by that node. The Internet comprises more
than 100 000 separate networks with more than 100 million hosts. There are millions
of routers, billions of web locations, and tens of billions of catalogued documents
resident on the World Wide Web.

ASIA

   NORTH AMERICA

EU
R

O
P

E

Fig. 13.3 Snapshot ofisps (Internet Service Providers) constructed from data collected
during the period 21 April 2003 through 8 May 2003. The angular position around the circle
represents the geographical longitude of theisp node (represented by a small square) while
the distance from the center to each node varies inversely with the traffic carried by that
node. The graph reflects more than 1 millionip (Internet Protocol) addresses and more than 2
million ip links that are, roughly speaking, aggregated into a topology of 11 000isps. Adapted
from http://www.caida.org/analysis/topology/ascore network/, which provides details of this
representation.
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13.2.3 Vertical layers

In conjunction with the horizontal complexity of the Internet described above, in-
formation in computer communication networks is transmitted in a vertically rich
manner, usually using a five-layertcp/ip (Transmission Control Protocol/Internet
Protocol) suite. Each layer relies on the layer below it for executing more primitive
functions, while providing services to the layer above it. The highest layer corre-
sponds to applications such ashttp, whereas the lowest layer handles the physical
transfer of bits over the medium.

We thus consider teletraffic in terms of five layers, each with its own set of tasks
and protocols (conventions and rules):

• Application Layer: Execution of individual applications such ashttp (hyper-
text transfer protocol),ftp (file-transfer protocol),telnet (telephone net-
work remote connection), orssh (secure shell).

• Transport Layer: Delivery of events within those applications, such as indi-
vidual file transfers within anhttp session (tcp is the transport protocol for
tcp/ip).

• Internetwork Layer: Transmission through the Internet of blocks of packets
within those file transfers (ip is the internetwork protocol fortcp/ip).

• Link Layer: Transmission of individual packets within those blocks of packets
on individual links.

• Physical Layer: Transmission of individual bits within those individual packets
on a particular link.

In general, different vertical layers exhibit different statistics. Users initiating
http sessions, for example, might well follow a homogeneous Poisson process, at
least over time scales of an hour or less (Feldmann, Gilbert & Willinger, 1998). On the
other hand, the initiation times for individualhttp commands, such as requests for
documents or images, would likely follow a different statistical pattern. For example,
individual packet arrivals might be characterized by a fractal-based point process as
a result of power-law-distributed file sizes (see Sec. 13.3.5).

Figure 13.4 displays a highly schematized picture of information transmission on
such a multi-layered structure, in the form of a cascaded point process. The primary
point processdN1(t) in a) might represent the arrivals ofhttp file-transfer requests
to a server. Each secondary point processdN2,k(t) in b) would then describe the
resulting packet transfers for the corresponding files measured at a nearby downstream
node, with the number of packets or temporal duration of each secondary process
corresponding to the extent of the associated file-transfer flow. The total packet
traffic processdN3(t) displayed in c) might then comprise the superposition of all
packet arrival times at that nearby node.
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a) PRIMARY PROCESSdN1(t)

-
6 6 6

TIME t

b) SECONDARY PROCESSESdN2,k(t)

6 6 66 6

6 6 6 6

-
6 6

TIME t

···
c) CASCADED POINT PROCESSdN3(t)

-
6 6 66 66 6 6 66 6

TIME t

Fig. 13.4 Partial schematic for computer network traffic based on a cascaded point process
(see Fig. 4.2 and Sec. 4.5). Each event of a primary point processdN1(t) (displayed in a)
initiates a secondary point processdN2,k(t) that terminates after a random number of events or
a random duration (displayed in b). All secondary points, taken together as indistinguishable
events, form the cascaded-point-process outputdN3(t) (displayed in c). Special cases of
cascaded point processes include the fractal Bartlett–Lewis process (Sec. 10.6.4) and the fractal
Neyman–Scott cluster process (Chapter 10).

13.3 FRACTAL BEHAVIOR

Designers of the first computer communication networks attempted to emulate the
approach used for voice networks, borrowing equations and even terminology from
telephony. Telephone lines became links in computer networks, exchanges became
servers, and calls became, variously, data streams, files, or packets. However, early
results proved disappointing. Small increases in buffer size did not dramatically
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reduce the overflow probability for computer communication networks, as would be
expected on the basis of Fig. 13.2.

Examining the packet streams revealed that computer network traffic arrived in
unpredictable bursts of activity over many time scales. To accommodate this behavior,
researchers proceeded to formulate increasingly complex Markov models, but with
limited success. These models relied on the implicit assumption that fluctuations in
the offered load resemble those of a homogeneous Poisson process for time scales
beyond a manageable cutoff time. But no such cutoff appeared to exist. Moreover,
as described in Sec. 13.2, the topology of the Internet and the dynamics of the World
Wide Web are constantly in flux. Unusual features such as these have far-reaching
implications for network engineering (Taubes, 1998).

13.3.1 Early evidence

In 1993, Leland and colleagues presented a seminal paper, followed a year later by
an extended version (Leland et al., 1994), in which they demonstrated that the rate of
Ethernet traffic varied as a fractal process with long-range dependence; these authors
further suggested that Poisson behavior does not obtain at any useful time scale. Many
subsequent measurements of computer communication traffic have vetted this early
finding (see, for example, Willinger et al., 2003, and references therein), demonstrat-
ing that fractal behavior over a large range of time scales is present in many different
kinds of traffic: Ethernet local-area-network (lan) traffic (Leland et al., 1994); wide-
area-network (wan) traffic (Paxson & Floyd, 1995), variable-bit-rate (vbr) video
traffic (Beran, Sherman, Taqqu & Willinger, 1995); and World Wide Web (www)
traffic (Crovella & Bestavros, 1997).

Soon after the first of these results appeared, traffic models based on fractional
Brownian motion (Norros, 1995) revealed that classical Poisson-based techniques
provided seriously flawed predictions for such systems. The queue-length distribu-
tions and overflow probabilities turned out to decrease far more slowly with buffer
size than expected on the basis of the exponential functions displayed in Fig. 13.2.
Markov models can generate highly variable traffic loads (“burstiness”) over short
time scales but the variability always diminishes as the time scale increases. Traffic
with fractal characteristics, on the other hand, exhibits significant fluctuations at all
time scales, with concomitant high-rate periods of all durations.

13.3.2 Second-order statistics

To illustrate the fractal nature of computer network traffic, we analyze the classic
Ethernet local-area-network (lan) data set BC-pOct89. The data comprise the arrival
times and durations of the first 1 million packets recorded on the main Ethernet
cable at the Bellcore (BC) Morristown Research and Engineering Facility over a
period of about 29 minutes beginning at 11:00 AM on 5 October 1989 (Leland &
Wilson, 1989, 1991). We initially examine the rate spectrum and the normalized Haar-
wavelet variance, measures that prove to be highly useful for parameter estimation, as
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discussed in Sec. 12.4. We subsequently examine a whole raft of statistical measures
for these data (see Sec. 13.6.1).

EXPONENTIALIZEDSHUFFLEDDATABC-pOt89 PERIODOGRAM

FREQUENCY f (Hz)ESTIMATED
RATESPECT
RUMb S �(f;T)

10110010�110�210�3
106
104
102

Fig. 13.5 Estimated rate spectrum (periodogram)Ŝλ(f, T ) vs. frequencyf for the BC-
pOct89 data set (solid curve), as well as for its exponentialized (dotted curve) and shuffled
(dashed curve) surrogates. We smoothed the spectral estimate using the procedure reported
in Footnote 7 on p. 117. The more-or-less straight-line decrease of the solid curve suggests
that BC-pOct89 has a fractal rate. Since exponentialization leaves the fractal behavior only
slightly changed, while shuffling destroys it, we conclude that the fractal behavior derives from
the ordering of the intervals rather than from their distribution. Periodic components are in
evidence at a number of frequencies.

As shown in Fig. 13.5, the estimated rate spectrum (solid curve) decreases in
a power-law fashion over a broad range of frequenciesf , confirming the presence
of 1/f -type noise and fractal behavior.7 The periodogram of the exponentialized
intervals (dotted curve; see Sec. 11.4.2) resembles the periodogram of the original
data. In contrast, a shuffled version of the data (dashed curve; see Sec. 11.5) yields a
periodogram that is devoid of power-law behavior. These results collectively indicate
that the relative ordering of the intervals, rather than their distribution, is responsible
for the fractal character of the data. Using the same reasoning we conclude that the
broad spectral feature nearf = 30 Hz derives largely from the interval ordering.

7 The ordinate and abscissa are unnormalized in the BC-pOct89 periodogram displayed in Fig. 13.5. These
same data appear in Fig. 5.1 with both the ordinate and abscissa normalized, and in Fig. 13.7i) with only
the ordinate normalized.
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EXPONENTIALIZEDSHUFFLEDDATABC-pOt89 NORMALIZED HAAR-WAVELET VARIANCE
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Fig. 13.6 Estimated normalized Haar-wavelet varianceÂ(T ) vs. counting timeT for the
BC-pOct89 data set (solid curve). As witĥSλ(f, T ), shown in Fig. 13.5, the more-or-less
straight-line behavior suggests that BC-pOct89 has a fractal rate. Again, the surrogate data
indicate that the interval ordering, rather than the interval distribution, is responsible for the
fractal character of the data.

The estimated normalized Haar-wavelet variance (see Sec. 3.4.3) displayed in
Fig. 13.6 (solid curve) also follows a power-law form over a broad range of counting
timesT , thereby confirming the conclusions drawn from the periodogram in Fig. 13.5.
Computing this statistic for the two surrogate data sets also confirms that the relative
ordering of the intervals, rather than their distribution, generates the fractal behavior.
The broad bump inÂ(T ) nearT = 0.02 sec corresponds to the spectral feature
nearf = 30 Hz in Fig. 13.5. The refractory behavior evident nearT = 0.005
sec corresponds to frequencies that lie above the upper limit of the periodogram in
Fig. 13.5.

13.3.3 Queueing-theory analysis

As a consequence of its fractal character, the second-order statistics of teletraffic
do not follow Markov predictions, as shown in Sec. 13.3.2. Nor does the queueing
behavior, as we now proceed to demonstrate.

For negligibly small buffers, fractal behavior has little impact on queueing per-
formance since short-term (nonfractal) fluctuations overwhelm the buffer resources
(Grossglauser & Bolot, 1996; Ryu & Elwalid, 1996). At the opposite extreme, ex-
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ceptionally large buffers rarely overflow. For intermediate buffer sizes, however, the
fractal nature of the traffic adversely affects queueing performance.

The queue-length distribution provides a useful window on network performance
for this commonly encountered situation. Queue-length distributions resulting from
fractal arrivals, or heavy-tailed service times, decay slowly with queue length in com-
parison with Markov predictions, often as power-law or Weibull functions (see, for
example, Cohen, 1969, 1973; Norros, 1994; Brichet, Roberts, Simonian & Veitch,
1996; Roughan, Veitch & Rumsewicz, 1998; Asmussen, 2003). This has important
implications for computer network traffic and for the design of computer communi-
cation networks (Erramilli, Narayan & Willinger, 1996).

A queue-length histogram that follows a decaying power-law form appears as the
solid curve in Fig. B.16 (the solution to Prob. 13.6). This simulated result derives
from the FGPDP/M/1 queue (ρµ = 0.9), for which a fractal-Gaussian-process-driven
doubly stochastic Poisson process (FGPDP) describes the arrivals, and the service
times are exponential. We focus on this particular queue because of the ubiquity and
importance of this arrival process (see Secs. 6.3.3, 8.4, 10.6.1, 13.5.3, and Chapter 12).
Moreover, these results closely approximate those for the rectangular fractal-shot-
noise-driven Poisson process (RFSNDP) (see Fig. B.19, the solution to Prob. 13.8),
a plausible model for computer network traffic as discussed in Secs. 13.5.5 and 13.6.
This latter queue-length histogram is also equivalent to a queue comprising Poisson
flow arrivals and heavy-tailed service times, as discussed in Sec. 13.4.3.

These power-law queue-length histograms differ sharply from their M/M/1 ge-
ometric cousins (dotted curves in Figs. B.16 and B.19), which emerge when a ho-
mogeneous Poisson process describes arrivals at the queue, and the service times are
exponential. The arrival process evidently imparts its fractal character to the resulting
FGPDP/M/1 and RFSNDP/M/1 queue-length histograms, yielding power-law forms
for these relations (straight lines on doubly logarithmic plots, as shown in Figs. B.16
and B.19).

The net result is a far larger range of possible queue lengths for the fractal queues.
No characteristic size exists beyond which overflow probabilities decrease dramati-
cally with increasing buffer size. Ensuring that fractal traffic reaches its destination,
rather than encountering buffer overflows, thus demands far larger buffers than those
needed for traffic based on Markov processes. Furthermore, the buffer-size require-
ments depend critically on the value of the fractal exponent that characterizes the
offered traffic. Finally, we cannot fully describe the network by the service ratioρµ,
since this quantity effectively fluctuates.

In addition to the first-order “quality-of-service” measures of network performance
considered above, second-order queueing statistics also prove important for charac-
terizing fractal computer network traffic (Park, 2000). These include the standard
deviations of the queue waiting time (“jitter”) and of the message-loss probability,
which, in many cases, can greatly exceed their mean values by virtue of the large
fluctuations imparted by the fractal rate.

Finally, we note that the multilayered structure of commonly used protocols adds
complexity to quality-of-service specifications (Park, 2000). Each layer has its own
communication structure, and therefore a different set of statistics to specify. For
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example, specifications for the application layer might include file transfer rates for
ftp or latency for anssh session, but for the link layer they may involve packet-drop
probabilities.

13.3.4 Predictability

The discussion provided in Sec. 13.3.3 shows that buffer overflows in computer com-
munication networks stem from the persistence of fractal-rate fluctuations; a rate
above the mean will likely remain so for some time. However, this same persistence
leads to predictability in the traffic flow and can therefore be used to facilitate the allo-
cation of resources to meet future needs. This approach can be useful in dynamically
configuring network topologies; reallocation times can easily exceed buffer overflow
times yet still lie well below the duration of long-term fluctuations.

Indeed, researchers have reported the feasibility of using predictive congestion
control for fractal computer network traffic (Tuan & Park, 2000). However, different
models yield vastly different values for the predictability,8 and different estimates of
fractal exponents also lead to varying results. Careful model choice and parameter
estimation prove crucial in taking advantage of the predictability of such traffic.

13.3.5 Origins

As mentioned in Sec. 2.7.1, fractal behavior in computer network traffic is often
ascribed to the power-law-distributed nature of file sizes (Park et al., 1996; Crovella
& Bestavros, 1997). Imagine transferring a collection of such files over a computer
communication network. Transfer viatcp (transmission control protocol) orudp
(user datagram protocol), in conjunction with flow and reliability control mediation,
yields traffic with fractal properties (Park et al., 1996). In many cases, however, the
fractal nature of computer network traffic appears to depend on all of the features
involved. Eliminating flow and reliability controls by usingudp alone, for example,
gives rise to output traffic that lacks much of the fractal structure of the input traffic
(Park, Kim & Crovella, 2000). Moreover, the exponents of the file-size distributions
do not always linearly predict the fractal exponents of the ensuing computer network
traffic (Park et al., 2000). Evidently, the flow-control process can impart considerable
complexity to the network traffic, beyond that of a simple fractal model.

Furthermore, large numbers of data-transfer processes occur concurrently within
the same network, dividing network resources among them. Higher throughput for
one application means less throughput for others. Features of one data stream, includ-
ing the fractal exponents of its flow, may therefore ultimately derive from features
of other streams. This interconnection becomes most important over times smaller
than the round-trip time of the network under consideration. The melding of various
fractal components may well lead to the multifractal characteristics seen over these
shorter time scales (Willinger et al., 2003).

8 We consider the predictability of fractional Brownian motion in Prob. 6.3.
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Requests for power-law distributed traffic, mediated via lower-level transfer proto-
cols, can lead to fractal behavior in communication networks. However, higher-level
elements of the traffic stream can generate fractal fluctuations more directly. For ex-
ample,vbr video traffic appears to exhibit fractal characteristics in a unified manner,
and to lack meaningful discrete elements that themselves have power-law statistics
(Garrett & Willinger, 1994). This fractal behavior may in turn derive from fractal
characteristics in the input video stream.9 Simple explanations do not always apply
for such a richly complex system as the Internet.

13.3.6 Cutoffs

As discussed in Secs. 2.3.1 and 12.2.1, cutoffs play an important role in modeling
fractal point processes; computer network traffic is no exception. The lion’s share of
the research in this connection concerns the long-time limit, and much of the mathe-
matical framework that has been developed depends on the fractal behavior extending
to infinite times. However, there are two reasons why fractal characteristics cannot
extend to arbitrarily large times for real network traffic: (1) daily, weekly, and yearly
rhythms exist, interfering with pure fractal behavior; and (2) all data sets truly have
finite duration. Moreover, the absence of cutoffs leads to unwieldy mathematics.
None of the results that we have set forth in this or earlier chapters depend on fractal
activity extending to infinite times. Following the approaches specified in Secs. 2.3.1
and 12.2.1, we continue this tradition and employ finite cutoffs. Nevertheless, com-
pelling mathematical reasons exist in some cases suggesting that outer cutoffs should
be eliminated (Mandelbrot, 1997), especially in computer network traffic (Willinger,
Alderson & Li, 2004).

13.3.7 Rate-process and point-process descriptions

As illustrated by the canonical data set labeled BC-pOct89, fractal fluctuations often
form the salient characteristic of computer network traffic while effects at shorter
time scales are less significant. Consider, for example, the normalized Haar-wavelet
variance presented in Fig. 13.6 for these data. The plot manifests little evidence
of fractal activity for counting times below about 10 msec, yet fully 98% of the
interevent intervals lie below this value. Furthermore, some (although certainly not
all) computer communication data sets have mean interevent intervals that lie far
below the timestamp resolution. For example, the World Cup 1998 access log (Arlitt
& Jin, 1998) comprises some 1 352 804 107 requests collected over 88 days from
30 April through 26 July 1998, at a resolution of one second. This translates to an
average rate of 17.8 requests per second over the entire log; daily averages exceeding
81 requests per second (30 June); and correspondingly higher local rates over shorter
time scales. Indeed, reconstructing the underlying point process for the World Cup
log proves impossible.

9Natural scenes exhibitspatial fractal behavior in their own right, as discussed in Sec. 2.8.5.
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We conclude that rate-based models, known asfluid-flow models in the context of
computer network traffic, are highly useful. Many key results in fractal network traffic
make use of this formulation, including early results relating to fractional Brownian
motion (Norros, 1995).

We do not suggest, however, that rate-based models are superior to point-process
models. As will become apparent in Sec. 13.6, data sets BC-pOct89 and BC-pAug89,
which comprise experimental point processes, are readily analyzed as such.

13.3.8 Multifractal features

Computer network traffic comprises a multitude of events over a large range of time
scales. In the BC-pOct89 data set analyzed in Figs. 13.5 and 13.6, for example, fully
5% of the intervals lie below 104µsec; since the total duration of this data set exceeds
29 minutes, it effectively spans more than seven orders of magnitude in time.

With such a wide range of scales, detecting two or more scaling exponents becomes
feasible.10 Indeed, researchers have detected multifractal properties in wide-area
network traffic over short time scales (Riedi & Lévy Véhel, 1997; Ĺevy Véhel &
Riedi, 1997; Mannersalo & Norros, 1997). In particular, Feldmann et al. (1998)
demonstrated that a conservative cascade model (Mandelbrot, 1974) could be used
to characterize such traffic; however, they argued that multifractal properties exist
only for (short) time scales that lie below the typical packet round-trip time (Riedi
& Willinger, 2000). Taken together, this suggests that wide-area network traffic flow
behaves as a multiplicative process over these short times, but becomes additive over
longer time scales (Riedi & Willinger, 2000). Using this flow as a rate leads to
the multiplicative-rate point process discussed in Sec. 5.5.1 (Schmitt et al., 1998).
Interestingly, and in contrast, local-area network traffic appears to exhibit only a
single fractal exponent and is therefore monofractal (Taqqu, Teverovsky & Willinger,
1997).

Other multifractal formalisms include processes with fractal exponents that vary
with time, or across different realizations of the random process (Abry et al., 2000).
We can readily construct a multifractal version of the fractal-shot-noise-driven Poisson
process set forth in Chapter 10. Generalizing the fractal impulse response function
defined in Eq. (9.2) provides

h(K, t) ≡
{

f(K) t−β(K) A < t < B
0 otherwise,

(13.13)

whereβ(K) andf(K) are functions of the random variableK that describe the fractal
exponent and its relative strength, respectively, for that particular impulse response
function. In spirit, this approach resembles that used to generate fractal behavior from

10This stands in contrast to essentially all of the other fractal point-process data examined in earlier chapters,
which had far shorter durations. In general, we found that characterizing one fractal exponent involved
sufficient difficulty that other exponents, were they present, remained essentially undetectable.
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a continuous superposition of Lorentzian spectra representing relaxation processes
with time constants distributed over a range of values (see Sec. 2.7.9).

To analyze all putative multifractal processes, it proves helpful to access an ex-
tended range of statistical measures, such as the higher-order moments of wavelet
transforms (Abry et al., 2000),E

[ |Cψ,N (T, ·)|q], and generalized dimensionsDq for
many values ofq (see Sec. 3.5.4).

13.4 MODELING AND SIMULATION

We now examine a number of salient issues pertaining to the mechanics of modeling
and simulation. In Sec. 13.4.1 we contrast the use of models for analysis and synthesis;
in Sec. 13.4.2 we provide a discussion of simulation methods and model complexity;
and in Sec. 13.4.3 we highlight the fact that equivalent models can appear in different
guises.

13.4.1 Analysis and synthesis

Models prove useful for both the analysis and synthesis of computer network traffic.
The use of models for analysis helps us visualize the effects of various parameters on
traffic flow and, in particular, assists us in identifying sources of fractal characteristics
in the traffic stream.

The synthesis of computer network traffic, on the other hand, provides syn-
thetic data that is invaluable for studying and testing yet-to-be-developed computer-
communication-network protocols and topologies. It is hard to overstate the value of
synthesis because of the prodigious volume of traffic data required to meaningfully
evaluate a new network design. For example, establishing a message-loss probability
of 10−9 with reasonable precision requires far more than109 packets for a memory-
less data stream, using a brute-force approach. Although good approximate methods
requiring less data do exist, simulation sizes remain considerable. The use of realistic
(fractal) traffic data, with its concomitant clusters of high- and low-activity periods,
further increases data requirements. Evaluating such a network over a range of pa-
rameters easily involves terabytes of data. In the face of such vast requirements, the
synthesis of data from fractal models is often the only viable alternative for evaluating
performance, particularly for novel networks that have not yet been implemented.

13.4.2 Simulation approaches and model complexity

What methods prove best for simulating computer network traffic? One of the first
issues that arises is whether to impose a feedback loop from the network under eval-
uation to the simulated incoming traffic. In other words, should the simulated traffic
source change what it offers on the basis of network parameters such as queue length
or number of dropped messages? In many real-world applications, such as video and
audio streaming (see Sec. 13.3.5), the offered load does not depend on the state of
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the network. In other applications, however, network performance does affect the
input traffic; users encountering excessive delays often terminate their connections
and wait until the network becomes less busy.

We do not address this issue explicitly for our network traffic models since none of
the processes we have considered to this point has provision for such feedback. But
we note that implementing feedback of this kind is not difficult since every model has
parameters that directly control the output rate. Indeed, as discussed in Sec. 13.3.5,
evidence exists that some of the fractal behavior inherent in computer network traffic
may derive from the flow-control process (Park et al., 2000).

After determining the broad class of simulation, the issue becomes the level of
detail to incorporate in the model. A tradeoff always exists between reality and
simplicity; the ideal model captures all salient features of a data set on the one hand,
and yet derives simply from a few underlying principles on the other hand. Useful
models must strike a balance on the continuum between these two ideals. In the
context of computer network traffic, the vast quantities of data shift the optimal model
strongly toward parsimony. Complex models do indeed capture more features of the
data, but they also tend to assume anad hocnature and require significant efforts to
program. Indeed, simulation execution times can grow out of bounds so rapidly that
models including even modest complexity can become useless.

13.4.3 Equivalent models in different guises

Identical network traffic can sometimes appear in different guises, as we briefly men-
tioned in Sec. 13.3.3. We saw such a duality in the context of general point processes
in Sec. 4.5: under certain conditions, cascaded and doubly stochastic representations
offer two different formalisms for the same underlying point process.

Consider, for example, a collection of data flows that follow a Poisson arrival
process and exhibit heavy-tailed durations. The overall flow is then fractal shot
noise with a rectangular impulse response function. We expect similar service times
for all packets since they are restricted to a maximum size and most are at or near
that maximum. The constituent packets consequently behave as a fractal-shot-noise-
driven Poisson process (or a closely related integrate-and-reset version thereof). This
leads us to recognize that the two processes are therefore different descriptions of
precisely the same traffic. We conclude that the rectangular fractal-shot-noise-driven
Poisson process (fractal Neyman–Scott process) is equivalent to a queue comprising
Poisson flow arrivals and heavy-tailed service times. The connection is most valuable
since this latter queue has been studied extensively in the literature. Moreover, in some
cases one formulation may prove conceptually simpler than another, or it may offer
faster simulations.
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13.5 MODELS

A brief overview of the structure of computer communication networks appeared
in Sec. 13.2, and we considered the fractal character of the resident traffic flow in
Sec. 13.3. We discussed a number of salient issues pertaining to modeling and sim-
ulation in Sec. 13.4.

With this background, we are now in a position to consider several of the mod-
els presented in earlier chapters in the context of computer network traffic. These
models, which offer different balances between reality and simplicity, as discussed
in Sec. 13.4.2, prove useful in elucidating the behavior of computer network traffic.
The mere fact that we considerseveralmodels, however, highlights the difficulties
associated with identifying a unique fractal-based point process for a given collection
of data. New models continue to be set forth (see, for example, Field, Harder &
Harrison, 2004a,b).

13.5.1 Fractal renewal point process

A fractal renewal point process (Chapter 7) serves as a suitable model for the activity
associated with a single network-traffic application. The superposition of a number of
these processes (see Sec. 11.6.2) then represents the aggregate traffic from a collection
of such applications, and thus provides a useful model for computer network traffic
(Ryu & Lowen, 1996, 1998). The power-law decaying interevent-interval distribution
imparts fractal fluctuations to the simulated teletraffic. A useful generalization of this
approach, which takes the form of a marked-point-process model, accommodates
messages of different (often power-law distributed) sizes (Levy & Taqqu, 2000).

13.5.2 Alternating fractal renewal process

The alternating fractal renewal process (Chapter 8) also leads to useful models for
computer network traffic (Ryu & Lowen, 1996, 1998). Rather than each message
forming a point event, as considered in Sec. 13.5.1, periods during whichX(t) = 1
correspond to a message (such as atcp connection) whereas periods during which
X(t) = 0 correspond to inter-message quiet. The sum of a number of such alter-
nating fractal renewal processes then represents messages independently generated
by several applications. This sum, which is fractal binomial noise (see Sec. 8.3.1),
serves as the rate process for packet generation.

Both Poisson and integrate-and-reset packet-generation mechanisms prove useful.
Specific results are available for the queue-length distribution (Boxma, 1996) and the
buffer overflow probability (Ryu & Lowen, 1997, 1998) for these point processes, as
well as for their rate-based approximations (Heath, Resnick & Samorodnitsky, 1998;
Jelenkovíc & Lazar, 1999). Both approaches illustrate the sometimes paradoxical
effects of fractal behavior: for1 < γ < 2, the dwell times forX(t) have mean
values that are finite, yet the average quantity of data residing in a buffer, waiting to
be transmitted, becomes infinite (Boxma, 1996). Also, in some cases buffer overflow
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probabilitiesturn out not to depend significantly on the rate at which messages leave
the buffer (Heath et al., 1998). The alternating fractal renewal process may be partic-
ularly suitable for modelinghttp activity; file sizes for this application are generally
power-law distributed (Feldmann, Gilbert, Willinger & Kurtz, 1998) and users often
alternate between web-page downloading[X(t) = 1] and viewing[X(t) = 0].

The extended alternating fractal renewal process (Yang & Petropulu, 2001; Yu,
Petropulu & Sethu, 2005), in which the packet-generation rate alternates between
zero and a random value, with all such values independent of each other, adds flexi-
bility to the rate process for modeling the burstiness of computer network traffic. A
related model that lacks the explicit final Poisson process has also been extensively
investigated (Mandelbrot, 1969; Taqqu & Levy, 1986; Levy & Taqqu, 2000).

13.5.3 Fractal-Gaussian-process-driven Poisson process

The fractal-Gaussian-process-driven Poisson process is ubiquitous because many
fractal-based point processes, as well as superpositions thereof, converge to it (see
Secs. 6.3.3, 8.4, 10.6.1, 11.6.1, 13.3.3, and Chapter 12). Kurtz (1996) showed that
similar behavior is observed in computer network traffic for the fractal-shot-noise-
driven Poisson processes considered in Sec. 13.5.5.

If a number of traffic sources aggregate to produce an overall traffic stream, flow
control will not significantly affect any one source by itself. Over long time scales,
then, the fractal Gaussian process (Sec. 6.3.3) should provide a useful model for the
rate of the resulting system. A number of queueing results based on such processes
exist in the literature (Norros, 1995; Lévy Véhel & Riedi, 1997).

13.5.4 Fractal Bartlett–Lewis point process

The vertical-layer structure discussed in Sec. 13.2.3 suggests that cascaded-point-
process models (see Fig. 13.4) may be useful for characterizing computer network
traffic. We consider two such models, in turn: the fractal Bartlett–Lewis point process
and the fractal Neyman–Scott point process.

The Bartlett–Lewis point process introduced in Sec. 4.5 makes use of a primary
homogeneous Poisson process; the secondary processes comprise segments of re-
newal processes with independent intervals drawn from identical distributions. The
homogeneous Poisson process does indeed provide a good description for session ar-
rivals in some forms of computer network traffic, at least over time scales of an hour
or less; examples includeftp andtelnet (Paxson & Floyd, 1995), as well ashttp
(Feldmann et al., 1998). In the fractal version of the Bartlett–Lewis model introduced
by Grüneis and colleagues (see, for example, Grüneis, 1984; Gr̈uneis & Baiter, 1986;
Grüneis, 2001), which was discussed in Sec. 10.6.4, the number of eventsMk in each
secondary process follows a power-law form. The power-law-distributed nature of
file sizes (Park et al., 1996; Crovella & Bestavros, 1997) accords with this model.

Hohn, Veitch & Abry (2003) considered the fractal Bartlett–Lewis model in the
context of computer network traffic. To match the measured interevent-interval his-
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togram, they drew renewal-process segments from identical gamma distributions11

of orderm = 0.60 (see Prob. 4.7). They selected the number of eventsMk in each
secondary process to follow a power-law form with no upper scaling cutoff, and chose
the exponent such thatMk had finite mean but infinite variance. The model of Hohn
et al. (2003) thus has five parameters: the primary-process mean interevent interval
E[τ1], the secondary-segment mean interevent intervalE[τ2], the order of the gamma
distributionm for this interevent interval, the mean number of eventsE[Mk] in a
secondary segment, and the power-law exponentz that characterizes the distribution
of these secondary events. Simulations based on the model accord well with many
features of network traffic; in particular, wavelet analysis reveals good agreement
with measured first- and second-order statistics for a variety of packet traces.

This model, as well as the fractal Neyman–Scott model considered in the next
section (Sec. 13.5.5), are promising candidates for characterizing computer network
traffic; we consider both in greater detail in Sec. 13.6.

13.5.5 Fractal Neyman–Scott point process

The final teletraffic model we consider makes use of a fractal Neyman–Scott cluster
point process. As with the Bartlett–Lewis process considered above, the primary
events derive from a homogeneous Poisson process corresponding to the start times
of traffic flows (see Fig. 13.4), but in this model the primary events initiate impulse
response functionsh(t) with power-law-varying durations (see Prob. 9.2 and Ryu
& Lowen, 1995, 1997, 1998). Adding a second Poisson process gives rise to a
form of the fractal-shot-noise-driven Poisson process set forth by Lowen & Teich
(1991) and studied in Chapter 10. It is a special Neyman–Scott cluster process,
as discussed in Sec. 4.5; related models have also been considered by Cox (1984),
Mikosch, Resnick, Rootźen & Stegeman (2002), and Latouche & Remiche (2002).
The power-law feature of the impulse response function captures the burstiness of the
traffic.

In the general case, no direct correspondence is patently obvious between the form
of the power-law impulse response function and any particular feature of the network
or traffic. Forftp and several other specific forms of traffic, however, file sizes
follow a power-law distribution (Paxson & Floyd, 1995; Park et al., 1996; Crovella
& Bestavros, 1997). As suggested by Ryu & Lowen (2002), we can therefore make
the fractal-shot-noise-driven Poisson process quite realistic by positing a rectangular
impulse response functionh(t) with a random cutoff timeB characterized by a
decaying power-law distribution (see Prob. 13.8). This rectangular fractal-shot-noise-
driven Poisson model closely mimics observedftp traffic.

Moreover, this approach permits the use of a queueing representation, as con-
sidered in Sec. 13.3.3 (see Fig. B.19, the solution to Prob. 13.8). As discussed in

11 Inasmuch as the primary and secondary processesbothgive rise to the form of the interevent-interval
distribution, its deviation from exponential form should, properly speaking, not be attributed solely to the
secondary process.
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Sec. 13.4.3, the queue-length histogram is identical to that for a queue comprising
Poisson flow arrivals, heavy-tailed service times, and locally Poisson packet arrivals.
In particular, the M/G/1/∞queue represents shot noise with a fixed-height impulse
response functionh(t). Specifying a power-law form for the service-time distribution
G yields fractal shot noise with this fixed-height impulse response function (Likhanov,
Tsybakov & Georganas, 1995).

The fractal Neyman–Scott model is similar to, but distinct from, the fractal Bartlett–
Lewis model considered in the previous section (Sec. 13.5.4). Since both are promis-
ing candidates for characterizing computer network traffic, we examine them in
greater detail in the following section (Sec. 13.6).

13.6 IDENTIFYING THE POINT PROCESS

As discussed in Secs. 5.5.4, 11.5.3, and 12.1, identifying a fractal-based point process
is not an easy endeavor. In this, the final section of the book, we set forth a step-
by-step approach toward identifying an arbitrary fractal-based point process, using
computer network traffic as a didactic testbed.

We offer the following steps as a possible blueprint for the analysis of unknown
fractal-based point processes.

13.6.1 Compute multiple statistical measures

We begin by gathering a whole range of measures from the experimental point process
and presenting them in a single graphic. For the case at hand, Ethernet-traffic data
set BC-pOct89, we present nine statistical measures as the solid curves in Fig. 13.7.

While the statistics of the data set itself are vital, calculating the same statistics for
surrogate data sets yields further information that is highly valuable for elucidating
the nature of the point process. We employ two surrogates. The first, a shuffled sur-
rogate, comprises the same interevent intervals as the original data set, but rearranged
into a random order. As described in Sec. 11.5, a shuffled surrogate has marginal
interevent-interval statistics that coincide with those of the original data. Since shuf-
fling generally destroys any dependencies among the intervals, thereby rendering
them independent, the other statistics mimic those of a renewal point process. In
short, shuffling destroys the long-term properties of a data set while preserving its
short-term qualities.

The second surrogate achieves essentially the reverse. As described in Sec. 11.4,
we construct this surrogate by transforming the interevent intervals from their orig-
inal form into a specified distribution, while preserving their relative ordering and
the mean of the interevent intervals. In particular, we transform the intervals through
exponentialization, which yields an exponential interevent-interval density. An ex-
ponentialized data set roughly resembles a Poisson process, but with a variable rate.

Figure 13.7a) directly displays the sequence of interevent intervals for the first five
seconds of the data set. The average of the two event times flanking an interval forms
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the abscissa for that interval, while the interval duration determines the ordinate.
We express the duration in terms of its mean,τ(t)/Ê[τ ], so that a value of unity
corresponds to an interval that equals this average. While no strong pattern emerges
from this panel, we see the large variability in the rate, as well as evidence for preferred
intervals at and below unity. We do not present shuffled or exponentialized versions of
these data since distinguishing among the three types of points would prove difficult.

While the individual intervals betray mainly short-term effects, the longer-term
properties of the point process are more readily revealed by variations in the rate,
presented in normalized form in panel b). We use a counting time of0.3 sec to
compute the normalized rate,λk/Ê[λ], so that the 41 windows shown along the
abscissa span 12.3 sec. A value of unity indicates a local rate equal to that of the data
set as a whole. The relatively low rate over the first ten or so windows corresponds
to the relative preponderance of long intervals in the first three seconds of panel a).
As expected, the shuffled surrogate shows far less variability than the original data,
since shuffling destroys inter-interval dependencies. The exponentialized surrogate
yields results resembling those of the original data.

The interevent-interval histogram displayed in panel c),p̂ (τ/Ê[τ ]), provides an
estimate of the underlying interval probability density (see Sec. 3.3.1). We normalize
both the abscissa and ordinate by the mean interevent interval, which yields dimen-
sionless quantities on both axes. The data roughly follow a decaying exponential
form, punctuated by a number of peaks. The shuffled surrogate has precisely the
same histogram, by construction. The exponentialized form follows a straight line,
as it must on this semilogarithmic plot.

The next four panels, d)–g), present interval-based measures that examine de-
pendencies across interevent intervals. All of these measures employ normalization
such that independent intervals yield values of unity on the ordinate, and all follow a
power-law form (straight line on these plots) for interevent intervals exhibiting fractal
correlations.

Panel d) presents the interval-based normalized rescaled range (NR/S),Û2(k) ≡
Û2(k)/k, as defined in Secs. 3.3.5 and 12.3.4. This measure follows a power-law
form for the original data, indicating fractal behavior. The exponentialized surrogate
yields similar results, but lies slightly above the original data. The shuffled surrogate
approaches a value of unity, but not closely; the difference stems from the well-known
bias inherent in this statistic.

In panel e) we display the normalized detrended fluctuation (NDF),Ŷ2(k2) ≡
15 Ŷ 2(k2)/k2Var[τ ], wherek2 = k + 2, as defined in Secs. 3.3.6 and 12.3.5. Rather
than plotting the number of intervals on the abscissa, we offset this by two, as ex-
plained in Sec. 12.3.5. This measure also exhibits power-law behavior, and perhaps
more closely follows the canonical fractal form of Eq. (12.2). Results for the expo-
nentialized data again lie slightly above those of the original data, while the shuffled
version yields values quite close to unity, as expected.

We show the normalized interval-based Haar-wavelet variance (NIWV),Âτ (k) ≡
V̂ar[Wψ,τ (k, l)]/V̂ar[τ ], in panel f). This measure, considered in Secs. 3.3.4 and
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12.3.6, yields results quite similar to those of the normalized detrended fluctuation
shown in panel e).

Panel g) displays the last of the interval measures, the normalized interval spectrum
(NIS),Ŝτ (f)/V̂ar[τ ], considered in Secs. 3.3.3 and 12.3.7. We smoothed this measure
as described in Footnote 7 on p. 117. Like the three preceding interval-based measures,
the normalized interval spectrum follows a power-law form for both the original and
exponentialized data. However, a bump appears in the spectrum at aboutf = 0.05,
corresponding to a conventional frequencyf = f/E[τ ] ≈ 28 Hz. The shuffled data
fluctuates closely about unity. All three curves approach a value of unity for large
frequencies, as imposed by the normalization.

The normalized Haar-wavelet variance (NHWV) shown in panel h),Â(T ), derives
from the sequence of counts rather than from the intervals (see Secs. 3.4.3, 12.2.3,
and 12.3.8). The abscissa therefore corresponds precisely to conventional time. All
curves achieve a value of unity at small counting times, by construction. For the
original data, this measure follows a power-law form for the most part. However, a
few bumps appear at shorter times; these are consistent with a periodic component in
the neighborhood of 28 Hz, as we also inferred from the interval spectrum in panel g)
[see also Prob. 4.10.1 in conjunction with Eq. (3.41)]. In contrast to panels d) through
f), the curve for the exponentialized data lies slightly below that of the original data,
although it otherwise resembles it in most respects. The shuffled surrogate yields a
normalized Haar-wavelet variance that dips slightly below unity at small counting
times and then increases to a value of about three at much larger counting times.
A renewal point process with an interval coefficient of variationCτ = 1.8 (see
Table 13.2) would yield a similar curve, in accordance with Eq. (4.18). Shuffling
retains the interevent-interval statistics, in particular preserving the empirical value
Cτ = 1.8 from the original data.

Finally, panel i) presents the normalized rate spectrum (NRS),Ŝλ(f, T )/Ê[λ], con-
sidered in Secs. 3.4.5 and 12.3.9. This measure also has an abscissa that corresponds
exactly to a conventional quantity, in this case frequency. To permit the frequency to
extend as high as 100 Hz, we employed a Fourier transform of size219, the minimum
for a data set of this duration. As with the interval-based spectrum in panel g), we
smoothed this measure as described in Footnote 7 on p. 117. Normalization by the
mean rate forces all curves to attain an asymptote of unity for sufficiently large fre-
quencies; however, the spectrum reaches this asymptote only for frequencies greater
than about104 Hz (not shown). (Unnormalized versions of the rate spectrum appear
elsewhere — see Footnote 7 on p. 326.) This measure yields results that roughly
resemble those for the interval spectrum displayed in panel g), with power-law be-
havior for both the original and exponentialized data. A peak appears at about 28 Hz,
in concert with those observed in panels g) and h). The normalized rate spectrum for
the shuffled data achieves a value of about three at low frequencies, in mirror image
to the normalized Haar-wavelet variance, as expected on the basis of Eq. (4.17).
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Fig. 13.7 Nine statistical measures for the classic computer network traffic data set BC-
pOct89 (solid curves). The data comprise the arrival times of the first 1 million packets recorded
on the main Ethernet cable at the Bellcore (BC) Morristown Research and Engineering Facility
over a period of some 29 minutes beginning at 11:00 AM on 5 October 1989 (Leland & Wilson,
1989, 1991). Results for the shuffled and exponentialized surrogates appear as the dashed and
dotted curves, respectively. We describe the measures and surrogates in the text.
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Fig. 13.8 Nine statistical measures for the classic computer network traffic data set BC-
pAug89 (solid curves). The data comprise the arrival times of the first 1 million packets
recorded on the main Ethernet cable at the Bellcore (BC) Morristown Research and Engineering
Facility over a period of some 52 minutes beginning at 11:25 AM on 29 August 1989 (Leland
& Wilson, 1989, 1991). Results for the shuffled and exponentialized surrogates appear as the
dashed and dotted curves, respectively. The statistics resemble those presented in Fig. 13.7 for
data set BC-pOct89.
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13.6.2 Compute statistical measures for multiple data sets

Since a similar, but independent, Ethernet-traffic data set is available, we present the
same nine statistical measures displayed in Fig. 13.7 as the solid curves in Fig. 13.8.
The object of investigating multiple data sets is to establish which features of the data
are general characteristics and which appear to vary from one data set to another.

The statistics for BC-pAug89 resemble those for BC-pOct89 in broad outline
(compare Figs. 13.7 and 13.8), although they differ in some small details, as we
proceed to highlight.

Periodicities are more dominant in the first two panels of Fig. 13.8 than in Fig. 13.7.
Panel a) in Fig. 13.8 displays the occurrence of rather long interevent intervals roughly
every second or so, the presence of which, in turn, leads to roughly periodic fluctu-
ations of the rate estimate in panel b), based on 0.3-sec counting windows. This
periodic component also appears as a peak in the normalized rate spectrum in panel i)
at about 1 Hz; a second harmonic also appears.12 The peaks and valleys in the normal-
ized Haar-wavelet variance displayed in panel h) derive from this as well. However,
this strong periodicity is specific to the time at which the data record begins; other
times within BC-pAug89 also display this feature, but less strongly. The beginning
of this data set also differs from the remainder in that the local rate exceeds the mean.
Normalized rates in excess of unity in panel b), and a preponderance of small intervals
in panel a), both accord with this observation. Conversely, some portions of data set
BC-pOct89 appear more periodic than its beginning. In fact, the periodic component
manifested at 28 Hz in BC-pOct89 is totally absent in BC-pAug89.

The interevent-interval histogram displayed in panel c) of Fig. 13.8 reveals different
peaks at various normalized interevent times; however, it exhibits an exponential tail
in the long-time limit (not shown). Similar behavior appears in panel c) of Fig. 13.7,
although the peaks are localized at different interevent times; it, too, exhibits an
exponential tail in the long-time limit.

We conclude that data sets BC-pOct89 and BC-pAug89 have similar principal
features, although they differ in many details.

13.6.3 Identify characteristic features

Taking the collection of these observations into account, two characteristic features
emerge with respect to the data presented in Figs. 13.7 and 13.8: (1) the presence of a
fractal rate, and (2) an estimated interevent-interval distribution that does not impart
fractal properties to the data. A signature of the first feature is the nearly constant,
nonzero slopes of the solid curves in panels d)–i) of both figures. Because shuffling
destroys this property (dashed curves), we conclude that the point process belongs to
the class of fractal-rate point processes, and not to the class of fractal point processes.
This conclusion is confirmed by the behavior of the generalized dimensionsDq for

12 Since data set BC-pAug89 has a duration that is approximately twice that of BC-pOct89, we doubled
the Fourier transform size to220 to allow the abscissa in panel i) to reach 100 Hz.
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these data (see Sec. 3.5.4 and Prob. 5.5), which exhibit integer values (not shown).
The capacity-dimension scaling function presented in Fig. 5.10 explicitly illustrates
this forD0.

While estimates of the fractal exponents vary considerably, depending on the mea-
sure and the method of estimation (tables not shown),α̂ = 0.8 and0.7 are good
compromises for Figs. 13.7 and 13.8, respectively. Obtaining accurate estimates is
particularly challenging because of the significant deviations from canonical forms,
such as those set forth in Eq. (5.44). As an example, the peaks and valleys near
T = 10−2 in the estimated normalized Haar-wavelet variance displayed in panel h)
of both figures are confounding short-time effects.

As both panels c) show, the exponentialized interevent-interval densities behave
as decaying exponential functions (dotted straight lines on these semilogarithmic
plots), as they must. The original histograms of both figures (solid curves) exhibit
peaks and valleys imparted by preferred intervals in the local traffic flow, and depart
significantly from exponential behavior. Furthermore, some slight evidence of a
positive curvature exists, particularly nearτ/Ê[τ ] = 4 and2, in Figs. 13.7c) and
13.8c), respectively. Power-law curves displayed on a semilogarithmic plot would, in
fact, exhibit just such a positive second derivative. However, for the largest intervals
shown, the interevent-interval histograms for these data coincide with the exponential
form engendered by exponentialization. Indeed, exponential behavior persists at far
larger intervals, as demonstrated in Fig. 5.9 for data set BC-pOct89.13 Thus, while an
exponential distribution provides only a fair model of the BC-pOct89 and BC-pAug89
interevent-interval histograms, a power-law distribution would be significantly worse.
We conclude that the estimated interevent-interval histograms are nonfractal.

Furthermore, for both Figs. 13.7 and 13.8, the fractal behavior in panels d)–i)
(solid curves) is destroyed by shuffling (dashed curves), but modified only slightly by
exponentialization (dotted curves), thereby confirming the absence of power-law tails
in the interevent-interval histograms. The behavior of these surrogates demonstrates
conclusively that the interval distribution does not contribute significantly to the fractal
nature of the computer network traffic at hand. Indeed, these observations validate
the use of the interval-based measures displayed in panels d)–g) for the analysis of
these data, as discussed in Sec. 12.3.1.

13.6.4 Compare with other point processes

Comparing the BC-pOct89 and BC-pAug89computer data with the collection
of other experimental point-process data examined in Chapter 5 yields a number of
interesting parallels and contrasts. Our goal of identifying the point process at hand is
also furthered by comparing thecomputer surrogates with the surrogates of other

13 Furthermore, the largest interval exceeds the mean by a factor of≈ 87 for Fig. 13.7c), and a factor of
≈ 109 for Fig. 13.8c) (see Table 13.2). This is reasonable for 999999 intervals with an exponential tail
[ ln(999999) ≈ 14], but not for a putative power-law distribution that imparts significant fractal behavior
to a point process.
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experimental point-process data examined in Chapter 11. All of the data sets that we
investigated turned out to be fractal-rate point processes. The following comparisons
prove useful in identifying thecomputer point process:

• Thenormalized rate spectrafor thecomputer data displayed in Fig. 5.1 [and
in Figs. 13.7i) and 13.8i)] reveal spectral features of various widths, sporadically
located over a broad range of frequencies. A number of other point processes
exhibit similar behavior.

• The normalized Haar-wavelet variancecurves presented in Fig. 5.2 [and in
Figs. 13.7h) and 13.8h)] demonstrate that the fractal exponent of thecom-
puter data has a valuêα ≈ 0.8, which is below unity; fractal exponents for
thecortex, cochlea, retina, andinterneuron (the latter appears in
Fig. 11.17) also lie below unity. All of the other data sets have fractal expo-
nents in excess of unity.

• Results gleaned from the correspondinginterval-based spectra, displayed in
Fig. 5.7 [also Figs. 13.7g) and 13.8g)], andinterval-based wavelet variances,
shown in Fig. 5.8 [also Figs. 13.7f) and 13.8f)], offer a broad confirmation
of the count-based results reported above. As discussed in Secs. 12.3.1 and
13.6.3, these measures are suitable for use in the analysis of fractal-rate point
processes.

Interval-based measures typically appear smoother than their count-based coun-
terparts. This arises because interval frequency and interval number do not
precisely track real frequency and time, respectively. This results in a loss
of phase coherence and a concomitant attenuation of narrow local features.
The increased smoothness does not signify that interval-based measures are in
any way superior to count-based measures, however. In fact, we have already
seen in the counting domain that while the normalized varianceF̂ (T ) appears
substantially smoother than the normalized Haar-wavelet varianceÂ(T ), the
former is significantly inferior to the latter for purposes of estimation (see
Fig. 12.8).

• Thecomputer interevent-interval histogramsdisplayed in Fig. 5.9 [and in
Figs. 13.7c) and 13.8c)] reveal a number of idiopathic features, of various
widths and at sporadic intervals. Several other point processes behave similarly.
The computer interevent-interval histograms most closely resemble those
associated with thesynapse andcortex.

• For all data sets, thenormalized rate spectraand normalized Haar-wavelet
variancesfor therandomly deleted surrogates, shown in Figs. 11.3 and 11.4,
respectively, resemble the original curves, displayed in Figs. 5.1 and 5.2, re-
spectively, but the random deletion dilutes the local features.

• For all data sets, thenormalized rate spectraand normalized Haar-wavelet
variancesfor the shuffled surrogates, shown in Figs. 11.13 and 11.14, re-
spectively, are devoid of the fractal behavior displayed in Figs. 5.1 and 5.2,
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indicating that all of the point processes we examined are fractal-rate in nature.
Using Eq. (4.18) in conjunction with Figs. 11.14 and 11.17, these surrogates
reveal clustered underlying interevent-interval histograms (Cτ > 1) for the
computer, synapse, cortex, and interneuron data, and anticlus-
tered histograms (Cτ < 1) for theheartbeat andcochlea data.

• For all data sets, comparison of thenormalized rate spectraand normal-
ized Haar-wavelet variancesfor theexponentialized surrogates, portrayed in
Figs. 11.10 and 11.11, respectively, with the corresponding original curves,
shown in Figs. 5.1 and 5.2, respectively, reveals a reduction of sharp spectral
and temporal features. This follows from the jittering of occurrence times
imparted by exponentialization, which results in a loss of phase coherence.

• Taken together, these observations lead us to conclude that theEthernet-traffic
computer point processshares an essential similarity with all of the other
point processes we have investigated, although itmost closely resembles the
striatecortex point process.

13.6.5 Formulate and simulate candidate models

In Sec. 13.5 we considered a number of fractal-based point processes as candidate
models for computer network traffic. We highlighted the family of cascaded point
processes, schematized in Fig. 13.4, since this class of models accommodates the
vertical-layer structure of the Internet in a parsimonious way (see Sec. 13.2.3).14 In
particular, we devoted considerable attention to the fractal Bartlett–Lewis point pro-
cess (Sec. 13.5.4) and the fractal Neyman–Scott point process (Sec. 13.5.5). Although
these models are distinct, they nevertheless share many features in common.

In this section we simulate these two point processes using parameters appropriate
for the classic Ethernet-traffic data set BC-pOct89 (Leland & Wilson, 1989, 1991).
We thereby obtain simulated collections of statistical measures, including surrogates,
analogous to those shown in Figs. 13.7 and 13.8. These, in turn, enable us to compare
the model results with the original data.

Both simulated processes have primary eventsdN1(t) that comprise homogeneous
Poisson processes (see Fig. 13.4). The difference in the two cascade models lies in
the manner in which the secondary eventsdN2,k(t) are generated. While an exponen-
tial distribution clearly does not do justice to the structure of the interevent-interval
histogram displayed in Fig. 13.7c), the accurate modeling of all of its periodicities
and favored intervals would require a significant investment in terms of both model
adjustment and simulation time. In keeping with the spirit of parsimony discussed
in Sec. 13.4.2, we therefore employ a homogeneous Poisson process for the genera-

14 As emphasized in the solution to Prob. 11.12.4, details regarding the underlying physical or biological
phenomena play an important role in framing a proper point-process model.
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tion of secondary events as well as for the primary process.15 This should still yield
reasonable results for longer-term effects.

For the Bartlett–Lewis process, fractal behavior indN3(t) arises from the power-
law distribution of the numbers of eventsM in each secondary processdN2,k(t).
This distribution, together with the mean rates of primaries and secondaries, define
the process. Constraints include the mean rate of the process, the fractal onset time,
and the fractal exponent. For ease of simulation, we chose the number distribution
for the secondary processes to bePr{M > n} = (n + 1)α−1 for all n ≥ 0. For
α = 0.8, this distribution has a finite mean of approximatelyE[M ] .= 5.27908,
but infinite variance. Dividing the measured rate of BC-pOct89 (568 sec−1) by
E[M ] yields the primary rate,µ1

.= 107.595/sec, which we round to 110/sec for
simplicity. Finally, a secondary rate ofµ2 = 160/sec yields approximately correct
values for the fractal onset times and frequencies. Note that the secondary rate does
not affect the overall rate of the point process, since theMk events eventually appear
in dN3(t) regardless of this rate. With this combination of values, an average of
3.62937 secondary processes exist at any given time. Table 13.1 provides a summary
of the parameters used in carrying out the simulations along with values derived from
the models.

For the Neyman–Scott process, we chose a fractal-shot-noise-driven Poisson pro-
cess with a rectangular impulse-response functionh(K, t) of constant heightc and
varying durationK (see Prob. 9.2.1). With this construct, each secondary process
has a constant rate while it exists; both primary and secondary processes are therefore
again homogeneous Poisson processes. We chose the same simple power-law distri-
bution forK as we used in Prob. 9.2.2, a generalized Pareto form; this imparts fractal
characteristics to the overall point processdN3(t). This process closely resembles the
Bartlett–Lewis point process discussed above. The principal distinction between the
two is that the Bartlett–Lewis process specifies the randomnumberof events in each
secondary processdN2,k(t), whereas the Neyman–Scott process instead specifies its
duration.

With the form of the secondary-process duration established, there remain four
parameters: the primary rate; andc, A, andβ from the impulse response function
h(K, t). Since the point process has but three constraints (mean rate, fractal exponent,
and fractal onset time), a free parameter remains. However, fractal behavior cannot
exist belowA, since by definition no impulse-response functions exist below this
cutoff. If A lies below the fractal onset times, then fractal behavior will be suppressed
between the onset time andA, reaching its asymptote at times somewhat larger than
A.16 Since this does not mimic the data at hand, we obviate this problem by choosing

15 Our model differs from that considered by Hohn et al. (2003) in a number of other respects as well.
Ideally, we would obtain results for various candidate secondary point processesdN2,k(t), and then fit
the resulting interevent-interval histogram ofdN3(t) (the process as a whole) to the data, adjusting the
secondary processesdN2,k(t) as necessary. Invoking the argument of parsimony, we do not carry out this
procedure.
16 Figure B.9 shows a similar effect, in the frequency domain, although it arises from a different origin
(random displacement of the events).
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Bartlett- Neyman-
Units Lewis Scott

PrimaryParameters

Power-Law Exponentα 0.8 0.8

Primary-Process Rateµ1 (sec−1) 110 70

Simulation Duration (sec) 1760 1760

Secondary-Process Rateµ2 (sec−1) 160 —

Secondary-Process Amplitudec (sec−1) — 140

Secondary-Process CutoffA (msec) — 10

Derived Expected Values

Concurrent Secondary Processes 3.63 4.2

Secondary-Process Duration (msec) 33.0 60.0

Events per Secondary Process 5.28 8.4

Total Aggregate Rate (sec−1) 581 588

Total Number of Events (×106) 1.02 1.03

Table 13.1 Parameters used for simulating realizations of the Bartlett–Lewis and Neyman–
Scott point processes. The entries that apply to both simulations, in the upper portion of the
table, derive from the target data set, BC-pOct89; we adjusted the other entries to fit the data
(see text for details). The five entries in the lower portion of the table are expected results
based on the theoretical properties of the models.

A = 0.01 sec, well below estimated fractal onset times. We also fixβ = 3−α = 2.2,
in accord with Eq. (B.196). This determines the average areaa of the impulse response
function:

a = c E[K] = c (β − 1)(β − 2)−1A = 0.06 c. (13.14)

Together with Eq. (10.10), this fixes the productµ1c. Finally, we adjust these two
quantities so that they produce a fractal onset time that resembles that of data set BC-
pOct89. We used a primary rateµ1 = 70/sec, and a heightc = 140/sec. Table 13.1
summarizes the values used. With these parameters, an average of 4.2 secondary
processes exist at any given time.

With the parameters for both processes established, we simulated the two cascaded
point processes. We present collections of simulated statistical measures for the fractal
Bartlett–Lewis and fractal Neyman–Scott point processes in Figs. 13.9 and 13.10,
respectively. The results exhibited strong sensitivity to the random seed chosen (not
shown), as expected for a fractal-based point process.17 Changing the parameters
slightly had the same effect since it effectively shifted the random numbers used

17 Figure 12.1 displays the effects of using various random seeds in a different context.
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Fig. 13.9 Nine statistical measures for a simulated fractal Bartlett–Lewis point process
(FBLPP) with parameters chosen to model the classic computer network traffic data set BC-
pOct89 (solid curves). Results for the shuffled and exponentialized surrogates appear as the
dashed and dotted curves, respectively. The statistics nicely mimic those shown for BC-pOct89
in Fig. 13.7, particularly those that portray fractal features. The results are quite similar to those
generated by the fractal Neyman–Scott point process (see Fig. 13.10).
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Fig. 13.10 Nine statistical measures for a simulated fractal Neyman–Scott point process (a
rectangular fractal-shot-noise-driven Poisson process, RFSNDP) with parameters chosen to
model the classic computer network traffic data set BC-pOct89 (solid curves). Results for the
shuffled and exponentialized surrogates appear as the dashed and dotted curves, respectively.
The statistics mimic those shown for BC-pOct89 in Fig. 13.7 quite well, particularly those
that portray fractal features. The results are very similar to those generated by the fractal
Bartlett–Lewis point process (see Fig. 13.9).
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Bartlett- Neyman-
Interval Statistics pOct89 pAug89 Lewis Scott

Total DurationL (sec) 1760 3143 1760 1760

Number of Intervals[N(L)− 1] 999 999 999 999 1 279 212 1 114 851
Minimum Interval (µsec) 16 20 0.000765 0.00108
Maximum Interval (msec) 154 342 36.0 51.3

Mean Interval̂E[τ ] (msec) 1.76 3.14 1.38 1.58

Mean RatêE[µ] (sec−1) 568 318 727 634

Interval Standard Deviation̂στ (msec) 3.20 5.64 1.59 1.89

Interval Coefficient of Variation̂Cτ 1.82 1.80 1.16 1.20

Interval SkewnesŝC3/Ĉ
3/2
2 9.77 9.35 3.07 3.40

Interval KurtosisĈ4/Ĉ2
2 170 153 17.5 21.9

Interval Serial Correlation Coefficient{
R̂τ (1)− Ê2[τ ]

}/
V̂ar[τ ] 0.180 0.200 0.122 0.138

Table 13.2 Representative estimated interval statistics (see Sec. 3.3 for definitions) for two
classic Ethernet-traffic data sets: BC-pOct89 and BC-pAug89. The data comprise the arrival
times of the first 1 million packets recorded on the main Ethernet cable at the Bellcore (BC)
Morristown Research and Engineering Facility on the mornings of 5 October 1989 and 29
August 1989, respectively (see Leland & Wilson, 1989, 1991). Although the mean rate of
BC-pOct89 is nearly a factor of two greater than that of BC-pAug89, as shown in row 6, the
normalized interval statistics, based on ratios of moments, agree quite closely (see rows 8–
11). The skewness, and especially the kurtosis, greatly exceed the values corresponding to a
Gaussian distribution, which are zero for the definitions we employ (see Footnote 2 on p. 55).
We also include simulated point-process results for two models of computer network traffic:
the fractal Bartlett–Lewis cascade point process and the fractal Neyman–Scott cluster point
process. The statistics for these two model processes agree with each other quite closely; they
also agree reasonably well with the statistics of the two computer network traffic data sets.

among the different stochastic quantities, yielding completely different secondary-
point-process durations, for example. On the whole, obtaining precise fits to the
target data set, BC-pOct89, proved quite difficult, and certainly beyond any sort of
automated minimization procedure such as Marquardt-Levenberg. Rather than search
extensively for a particularly lucky set of parameters and random seed, we used round
numbers for the parameters, and a default seed. Thus, while we could precisely match
the durations of the simulations to that of the BC-pOct89 data set (1759.6 sec), the
total number of events varied considerably from the target of999 999; we generated
1 279 212 and1 114 851 events for the Bartlett–Lewis and Neyman–Scott processes,
respectively. Table 13.2 presents a collection of interval statistics derived from these
simulations, along with those for the canonical data sets BC-pOct89 and BC-pAug89.
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13.6.6 Compare model simulations with data

The similarity in construction between the Bartlett–Lewis and Neyman–Scott cas-
caded point processes carries forth to their results, which closely resemble each other,
as demonstrated in Figs. 13.9 and 13.10, as well as in Table 13.2. By construction,
both lack the local bumps, peaks, and valleys evident in the statistics of the computer
network traffic data shown in Figs. 13.7 and 13.8 (features such as these also appear
in biological point processes, as mentioned in Sec. 13.6.4). As a result, the two model
simulations resemble each other a bit more closely than either does the target data set.
Lacking explicit mechanisms for generating these effects, both simulations change
little with exponentialization.

Aside from this, both simulations share all of the characteristic features of the
original data discussed in Sec. 13.6.3. Furthermore, as shown in Table 13.2, the
interval statistics for the two model processes agree reasonably well with those of the
two computer network traffic data sets, BC-pOct89 and BC-pAug89. Even the interval
coefficients of variation for the Bartlett–Lewis and Neyman–Scott simulations,Cτ

.=
1.16 and1.20, respectively, are not inordinately different from those of data sets BC-
pOct89 and BC-pAug89,Cτ

.= 1.82 and1.80, respectively. Interval shuffling has
essentially the same effect on the simulations as it does on the original data (compare
dashed curves in Figs. 13.7–13.10).

It appears that the Bartlett–Lewis and Neyman–Scott constructs yield statistics that
accord quite well with those obtained from the canonical Ethernet-trafficcomputer
data sets that we studied. Interestingly, of all the point processes we investigated, the
computer point process most closely resembles that observed at the striatecortex
(see Sec. 13.6.4). In fact, the Neyman–Scott cascade process has also been effectively
used to model the sequence of action potentials recorded from striatecortexneurons
(Teich et al., 1996).

Problems

13.1 M/M/1/∞ queue-length distribution How do Eqs. (13.1) and (13.2) change
when the buffer size is infinite?

13.2 M/M/M / Qm queue-length distribution Describe the changes required for
Eq. (13.1) whenM servers handle requests from the same buffer.

13.3 Buffer overflow probability approximationsFor some queueing models with
finite-size buffers, the calculation of the buffer overflow probabilityPB is mathemat-
ically intractable. In such cases one typically solves the relevant equations assuming
infinite buffer size (see Prob. 13.1), and then chooses some other representation for
buffer overflow. Consider Eq. (13.1) under the simplification of infinite buffer size,
and denote the resulting queue-length distribution byp∞(n). A number of approx-
imations for the overflow probability are commonly employed, includingp∞(Qm),
p∞(Qm + 1),

∑∞
n=Qm p∞(n), and

∑∞
n=Qm+1 p∞(n). Derive forms for each of

these quantities for the M/M/1 queue and show that for large values ofQm, the
approximate resultp∞(Qm) lies closest to the true resultpQ(Qm).
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13.4 M/M/1 queue buffer design Consider a homogeneous Poisson process with
a mean interevent interval of 10 msec providing an arrival stream to a queue. Suppose
that the service times follow an exponential distribution with a mean value of 9 msec
and that there is a single server. For this traffic, determine the minimum buffer sizes
that give rise to overflow probabilities of no more than10−3, 10−6, and10−9.

13.5 M/M/1/∞ queue simulation Simulate the queue specified in Prob. 13.4 for
106 seconds (≈108 arrivals), but assume now thatQm → ∞. Plot the estimated
queue-length histogram̂p∞(n). To ensure stationarity, include an additional104 sec-
onds at the beginning and discard it. Show that the histogram follows a geometric
form. Use this plot in conjunction with the results obtained in Prob. 13.4 to con-
firm that Eq. (13.12) provides a good estimate for the overflow probability in the
M/M/1/Qm queue.

13.6 Fractal-Gaussian-process-driven Poisson process queue simulation
Figures 12.1–12.7 and 12.9 provide results derived from simulations of a Poisson

process driven by a fractal Gaussian process (FGPDP) with a mean rateE[µ] = 100,
durationL = 104, fractal exponentα = 0.8, onset frequencyfS = 0.2, and fractal-
Gaussian-process array sizeM = 217 (of which we used half). We considered this
point process in Secs. 6.3.3, 8.4, and 10.6.1, as well as in Chapter 12.

13.6.1. Using this same process, but withL (andM ) increased by a factor of
100, simulate the associated G/M/1 queue assuming exponentially distributed service
times with a mean value1/µs = 0.009. Plot the estimated queue-length histogram
for this process on doubly logarithmic coordinates. Compare it with the theoretical
M/M/1 result and with a decaying power-law distribution.

13.6.2. Now repeat the simulation, changing the mean service time to1/µs =
0.005 while leaving everything else unchanged. Plot the result on semilogarithmic
coordinates this time, and explain why it does not follow a fractal form.

13.7 Shuffled-fractal-process queue simulationConsider the traffic-process sim-
ulation described in Prob. 13.6. Randomly shuffle this simulation and repeat the
queueing analysis with an average service time of 0.009. Show that the result agrees
well with that obtained for the M/M/1 queue (see Prob. 13.5).

13.8 Fractal-shot-noise-driven Poisson process queue simulationSimulate a
fractal-shot-noise-driven Poisson processN(t) (see Chapter 10), where the impulse
response functions have a rectangular shape of constant heightc, and a duration that
obeys a decaying power-law distribution (see Prob. 9.2). Specifically, let the prob-
ability that the impulse-response-function durationK exceeds a valuex take the
form

Pr{K > x} =
{

(A/x)β−1 x > A
1 x ≤ A,

(13.15)

with β = 2.2, A = 1, andc = 10
3 . Let the primary Poisson process rateµ = 5. This

yields an expected interevent interval at the secondary Poisson process ofE[τ ] =
0.01. Assume that all impulse response functions are independent and identically
distributed. Again, set the duration of the simulationL to106 for an expected number
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of eventsE[N(L)] = 108; include an additional duration of104 at the beginning of
the simulation, and discard these results. Simulate the associated G/M/1 queue using
N(t) as the arrival process and assume exponentially distributed service times with a
mean value of1/µs = 0.009. Plot the estimated queue-length histogram and compare
it with the results displayed in Fig. B.16.

13.9 Modulated-fractal-process queue simulationWe have considered queue-
length histograms for several fractal-rate arrival processes (see Figs. B.16, B.17, and
B.19). We wish to investigate how a periodically modulated arrival process changes
the character of these histograms.

Consider, as a simple example, a Poisson point processdN1(t)driven by a periodic,
deterministic rate of the form

µ(t) = µ0[1 + a cos(ω0t)], (13.16)

wherea is the modulation depth and we positµ0/ω0 À 1 to ensure that a large number
of events occur within each period of the modulated waveform. We can impose such
modulation in the following manner: Generate a new point processdN3(t) from a
homogeneous Poisson processdN2(t) by multiplying the event times ofdN2(t) by a
suitable nonlinear function ofcos(ω0t), chosen so thatdN3(t) has the same statistics
asdN1(t). Said differently, we can warp the time axis of the (unmodulated) point
process in a periodic manner to generate a result that mimics a sinusoidally modulated
inhomogeneous process.

We can impose such periodic time warping on any arbitrary point process. Be-
gin with the fractal-Gaussian-process-driven Poisson process (FGPDP) considered in
Prob. 13.6. Carry out the time warping discussed above and generate a point pro-
cess that mimics a sinusoidally modulated (inhomogeneous) version of the fractal-
Gaussian-process-driven Poisson process. Now let the modified point process serve as
the arrival process for a G/M/1 queue, which we denote MODULATED-FGPDP/M/1.
For the service process, assume exponentially distributed service times with a mean
value1/µs = 0.009. Use a modulation period2π/ω0 = 1 min and a modulation
deptha = 1, as defined by Eq. (13.16). Simulate and plot the estimated queue-length
histogram for this queueing problem, and compare your result with those obtained in
Prob. 13.6.1 (Fig. B.16).

13.10 Estimating two fractal exponents Consider a data set that gives rise to
a normalized Haar-wavelet variance with two separate power-law regions. The first
exhibits a fractal exponentα1, and extends fromTA1 to TA2; the second exhibits a
fractal exponentα2 > α1, and extends fromTA3 to TA4.

13.10.1. The accurate estimation ofα1 andα2 requires thatTA2/TA1 andTA4/TA3

both exceed103. We also setTA1 = 10 E[τ ] to ensure a practical process, and require
a total durationL ≥ 10 TA4 to achieve a reasonably small variance nearTA4. How
many events must a simulated data set with these properties contain on average?

13.10.2. One can always fit a monofractal form to a bifractal data set. Using
the minimum suitable values found in Prob. 13.10.1, and the exponentsα1 = 0.4
andα2 = 0.8, calculate the corresponding ideal normalized Haar variance. Plot
this bifractal curve, and find the monofractal curve that minimizes the mean-square
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error on a doubly logarithmic plot. Compare the two curves and comment on the
difference, bearing in mind the implications of Eq. (12.25). Repeat this exercise for
TA2/TA1 = TA4/TA3 = 10.
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